Algorithmic Meta-theorems

نویسنده

  • Stephan Kreutzer
چکیده

Algorithmic meta-theorems are general algorithmic results applying to a whole range of problems, rather than just to a single problem alone. They often have a logical and a structural component, that is they are results of the form: every computational problem that can be formalised in a given logic L can be solved efficiently on every class C of structures satisfying certain conditions. This paper gives a survey of algorithmic meta-theorems obtained in recent years and the methods used to prove them. As many meta-theorems use results from graph minor theory, we give a brief introduction to the theory developed by Robertson and Seymour for their proof of the graph minor theorem and state the main algorithmic consequences of this theory as far as they are needed in the theory of algorithmic meta-theorems. ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Report No. 147 (2009)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for Algorithmic Meta Theorems

Algorithmic meta-theorems state that certain families of algorithmic problems, usually defined in terms of logic, can be solved efficiently. This is a survey of algorithmic meta-theorems, highlighting the general methods available to prove such theorems rather than specific results.

متن کامل

Logic, graphs, and algorithms

Algorithmic meta theorems are algorithmic results that apply to whole families of combinatorial problems, instead of just specific problems. These families are usually defined in terms of logic and graph theory. An archetypal algorithmic meta theorem is Courcelle’s Theorem [9], which states that all graph properties definable in monadic second-order logic can be decided in linear time on graphs...

متن کامل

Algorithmic Meta Theorems for Circuit Classes of Constant and Logarithmic Depth

An algorithmic meta theorem for a logic and a class C of structures states that all problems expressible in this logic can be solved efficiently for inputs from C. The prime example is Courcelle’s Theorem, which states that monadic second-order (mso) definable problems are linear-time solvable on graphs of bounded tree width. We contribute new algorithmic meta theorems, which state that mso-def...

متن کامل

Parallel Multivariate Meta-Theorems

Fixed-parameter tractability is based on the observation that many hard problems become tractable even on large inputs as long as certain input parameters are small. Originally, “tractable” just meant “solvable in polynomial time,” but especially modern hardware raises the question of whether we can also achieve “solvable in polylogarithmic parallel time.” A framework for this study of parallel...

متن کامل

Graph Minors and Parameterized Algorithm Design

The Graph Minors Theory, developed by Robertson and Seymour, has been one of the most influential mathematical theories in parameterized algorithm design. We present some of the basic algorithmic techniques and methods that emerged from this theory. We discuss its direct meta-algorithmic consequences, we present the algorithmic applications of core theorems such as the grid-exclusion theorem, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electronic Colloquium on Computational Complexity (ECCC)

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2008